
ESTIMATING THE DEGREE OF ANISOTROPY OF ELASTIC MEDIA 

V. S. Budaev UDC 539.3-534.231.1 

The refraction curves, wave-front geometry, and changes taking place in these 
characteristics on varying the elastic constants of anisotropic media over wide 
ranges are analyzed. A quantitative criterion is derived for estimating the 
number and disposition of the lacunas, the properties of the roots of the cha- 
racteristic equation, and other important characteristics of the medium. 

i. We shall consider media characterized by the following equations of motion under 
conditions of plane deformation: 
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= - - p a J ,  

(i.i) 

where u, w are the displacement vector components along the x and z axes, respectively; cI, 
c2, c3, c~ are certain coefficients expressed in terms of the elastic constants of the 
medium,p is the density, t is the time, al, a= are constants, and f is a certain function 
of x, z, t. 

The equations of motion of elastic anisotropic media reduce to the system (i.i) in four 

cases. 

i. Cubic crystals (three elastic constants). The quantities c~, c2, c3, c~ are ex- 
pressed in terms of the elasti~ constants of the medium in the following way: 

C1~ C4= a11, C2~ a12~-a44, C3~- a44. 

2. Transversally isotropic media, hexagonal crystals, and certain rhombohedral forms 

(five elastic constants). 

C1= all, C2: a13~a44~ c3= Q44~ C4:a334 

3. Certain forms of tetragonal crystals (six elastic constants), 

c I : a l l ,  c2:a13~Q44, c3:a44, c4=a33. 

4. Rhombohedral cyrstals and orthotropic materials (nine elastic constants), 

cI~alD c2~a13~a55~ c3~a55~ c~a33. 

These results follow from those given by Love [I]. The directions of the coordinate 
axes are also chosen in accordance with [I]. 

It is assumed that the coefficients of the equations satisfy the conditions of hyper- 
bolic configuration, which in terms of the quantities ~, B, ~ assume the form [2]. 
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~,  = c3fq ,  ~ = c31c4, ~ : 1 4" o~ - -  - - .  
CIC~ 

(lo2) 

The conditions for the positive-definite state of the elastic energy in the case of 
plane deformation may be written 

czc 4 > (c9, - -  %)~ (1.3) 

and coincide with the conditions required to ensure real roots of the Rayleigh equation. 

For triaxial deformation the positive-definite condition contains the complete set of 
elastic constants and has its own particular form for each of the foregoing classes of 
elastic symmetry. 

The transition from isotropic media (a very special case of elastic media) to those of 
more general form poses the question as to the nature of the singularities characterizing 
transient wave fields in the anisotropic material and the possibility of replacing the lat- 
ter by a certain equivalent isotropic medium, since the solutions of all practical problems 
take a simpler form in the latter case. For this purpose it is desirable to possess simple 
quantitative criteria giving a complete representation of the wave picture without having 
to solve any specific problem. From this point of view problems involving concentrated, 
pulsed action acquire a special significance, since the closed solution obtained for these 
systems enable us the study of the foregoing problems very widely [3, 4, 5]. 

Of all the media satisfying conditions (1.2) and (1.3) we separate out those satisfying 
the following inequalities [3, 4]: 

[2~(i-Wfi) -- ~(1-!-~)1 ~ -  I~ -- 1 [ | 7 ~ -  4~l~; 

0 < c ~ < I ,  O < [ J < , l .  

(1.4) 

( i .5) 

(1.6) 

We classify these media as the "first group." Subject to conditions (1.4)-(].-6), the 
roots of the characteristic equation ~n(O) and en(~) for real values of the argument take 
only real or purely imaginary values [3, 4]. 

Investigations show that even for plane deformation the permissible range of values of 
ci, c2, c3, c~ is determined, not only by conditions (1.2) and (1.3), but also by the con- 
ditions required to ensure the positive-definite nature of the elastic energy in cases of 
triaxial deformation. Hence, each type of elastic symmetry should be considered separately, 
despite the fact that under conditions of plane deformation all are described by the same 
system of equations of motion (i.i). 

Let us consider a medium with cz = c~ or a = 6, a particular case of this including 
crystals of the cubic system. If the medium is isotropic, then y = 2~. Of the five types 
of wave-front geometry feasible, the two illustrated in Fig. i are realized for plane de- 
formation in the case of media satisfying conditions (1.4) and (1.5). The first is character- 
ized by smooth fronts (Fig. la, rock salt). The wave fronts (Fig. ib, c, d) characterized 
by four lacunas not lying on the coordinate axes (ice, beryl, sandstone) belong to the sec- 
ond type. Here we are considering the wave fronts arising in an infinite medium from a 
concentrated pulse source [3]. 

For 0 < ~ < 0.75, an anisotropic medium of the type under consideration (cz = c4) may 
be represented by a single isotropic medium, propagating waves at the same velocities as the 
former along the x and z axes, i.e., having the same values of the coefficients cI, c3, Po 
For such an isotropic medium c= = cz -- c3 = c~i s. 
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Fig. 1 

On the other hand, corresponding to every isotropic 
medium we have an infinite number (series) of anisotropic 
media having the same coeffients c~, c3, P as the latter 
and only differing in respect to the coefficient ca. It 
is thus natural to consider the value of the coefficient 

AA~= " ~ (c l  c~)/c2 C2-1 s / C2~:: 

as a criterion for comparing the properties of anisotropic 
media belonging to the series in question with each other 
and with the isotropic medium generating the series. Al- 
lowing for the condition 72~ 4e~ , which in the case a = B 
takes the form ? ~ 2~ , we find that for media of the first 
group A a ~ t .  

By comparing the configurations of the wave fronts in 
Fig. i, we see that for A A = 1.107; AA, = 1.325 (rock salt) 
the wave fronts are smooth, while for A A = 1.442; AA, = 
1.187 (ice) lacunas appear, increasing in size with in- 
creasing A A : A A = 2.84; AA, = i.i (beryl) and A A = 3.85; 

AA* = 1.05 (sandstone). It is natural to assume that as AA falls from A A = 1.442 the size of 
the lacunas will diminish; on passing through a certain value A A = AA, they will vanish, and 
the fronts will become smooth, as in the case of rock salt. An example of a medium in which 
A A : ~ A A ,  , is sylvine. 

The geometry of the wave fronts obtained for a concentrated pulse source is represented 
by the envelope of a family of plane waves defined by the equation 

t -  O x -  ~,,(O)z--O, 

where ~n(0) are the roots of the characteristic equation of the system. 

The function ~i(0) in the range 1OK ~ a and ~2(0) in the range I01 ~ b, (a=Vrp/cl, b=Vp-~3) 
define the two corresponding branches of the refraction curve on the ~, 0, plane, which are 
closely related as regards shape to the geometry of the wave fronts. If the refraction curves 
are convex, the wave fronts are smooth. The geometry of the wave fronts containing the 
lacunas represents the case in which the branch of the refraction curve corresponding to 
~2(0) has a point of inflection. Since the refraction curves are of the fourth order, the 
maximum number of points of inflection is eight, i.e., two in each of the quadrants on the 
~, @ plane. Each pair of inflections corresponds to one lacuna, so that in this case four 
lacunas exist. If conditions (1.4) and (1.5) are satisfied, the wave fronts have the form 
of Fig. ib,c,d. (The situation in which the refraction curve corresponding to ~(0) has 
four points of inflection is only possible for media in which ci=/=c4). There are no other 
possibilities for media with c~ = c4, apart from the case in which points of inflection are 
completely absent. The instant of passing from smooth wave fronts and convex refraction 
curves to wave fronts with four lacunas, arranged as Fig. ib, c, d, corresponds to the mo- 
ment at which inflections appear on the refraction curve corresponding to ~2(0) (outer curve). 
For a specific value this corresponds to a certain critical 7=?.. The condition for the 
development of points of inflection on the ~2(0) curve gives the following expression for ?, 

2 ? , - - - - 3  ( i  - -  o~)~-;-(i i- ~ ) V 9 g  2 - -  1 4 g  .-9.  
(1.7) 

Expressing AA, in terms of ~ and ~ we obtain 

AA=(J - -  ~)/ | '~t  i-~ ~" - -  7, 7 ~ 1 i-~ ~-. (1.8) 

Substituting the expression for ?, into (1.8), we obtain a formula for the critical 
value of AA,(~ ), corresponding to a transition from wave fronts of the first type (AA<AA,, 
region II in Fig. 2) to wave fronts of the second type ( AA>AA,, region I in Fig. 2). The 
relationship AA=:AA,(~) defines curve 1 in Fig. 2. The further A A stands in region I from 
the value AA,, corresponding to the specified ~, the larger is the region occupied by the 
lacunas (sandstone). 
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If we return to the curves of displacements for the problem of a concentrated source 
in an unlimited medium [3] or for the Lamb problem [4] we see that the same tendency appears. 
In the case of rock salt the curves of displacements differ little from the corresponding 
curves for the model isotropic medium chosen in the manner just indicated. For sandstone 
the differences are very great [3, 4]. If the values of A A lie in the range i <AA<<AA,, 
the anisotropic medium may be replaced by the isotropic medium already indicated. Complete 
coincidence will occur for A A = 1 (curve 2). Thus in the case of media of the first group 
AA may serve as a criterion for estimating the size of the region occupied by the lacunas and 
also the difference between the displacement curves which may be expected to arise on replacing 
the anisotropic by the isotropic medium when considering plane (and, in the case of trans- 
versally isotropic media, axisymmetrical) problems. The results also extend to media not 
related to cubic crystals, but in which c~ and c~ (even if not equal) are of similar values 
(~ ,~ ~). 

The results obtained related to the case AA~i. 

2. Let us consider media for which AA<I and the condition ~ = B is observed. Sub- 
ject to the condition ~<i the whole of the permissible range of y values comprises three 
intervals: 

-- 2cz < y < a (a - i - l ) ,  ~.(~z-',-t) < V < 2a; 2o~ ~< y < I [-a 2. (2.1) 

The boundary values of --2a, l - f fa  ~ arise from the conditions governing the hyperbolic 
state. The range 2a~y<li ~2 is associated with the first-group media already considered. 
It remains to consider the two first intervals of (2.1). On passing from the values y~2a 
to the values y<2~ of Eqs. (1.4) and (1.5) only one inequality remains in force:?>a(a~l). 

The coefficient A A becomes smaller than unity, i.e., there is a transition from region 
II to region III (through the straight line A A = i) on the AA, ~ plane (Fig. 2). 

For values of A A in region III the wave fronts are smooth and the refraction curves 
convex. However, the roots of the characteristic equation ~(0) take a different form on 
the real axis 0 ~ and belong to those of the "second type," according to the classification 
of [5]. The lower boundary of region III is curve 3 

This curve corresponds to values of h A for which inflection points (y=a(~ 1-I)) arise on 
the refraction curve, so that in region IV on tile AA, a plane the refraction curves exhibit 
regions of concavity, as in region I, but in contrast to region I these are situated on the 
coordinate axes, and hence the wave fronts are characterized by the presence of lacunas in- 
tersected by the x and z axes. The roots of the characteristic equation are of the third 
type according to [5]. 

The lower boundary of region IV in Fig~ ~ 2 (curve 4) is defined by the values of AA 
associated with y ---- 2a , which are also the minimum values, since for smaller values of 
A A the hyperbolic conditions are not satisfied. Representatives of media for which the 
values of hA lie in region IV include copper (AA-=0.478) and the majority of pure metals with 
cubic lattices, so that these media are quite common in addition to those having A A values 
in the regions I and II. 

For the majority of metals with cubic and hexagonal close-packed lattices, as well as 
many minerals, the values of ~ lie in the range O<a<0~5 , as in the cases which we have 
just been considering. It should be noted that, from the point of view of thermodynamics, 
isotropic media admit ~ values in the range 0<a<0.75 . Acually, we always have 0<~< 
<0,5 , so that the interval 0.5 <a< 0.75 corresponds, in the case of isotropic solids, 
to negative values of the Poisson coefficient. Such materials should experience an increase 
in transverse dimensions on being subjected to tensile strain. No such materials are in 
fact known [6]. In certain materials with cubic lattice (iron, germanium, potassium, sodium, 
lithium) and also in beryllium (hexagonal close-packed structure) the value of ~ lies in 
the range 0.5 <a< 0.75. 

In the case of a source in an unlimited medium (and the Lamb problem) for media with 
A A values in the ranges III and IV, the curves of displacements contain a series of sin- 

621 



TABLE i 

ii - 
ment c~ 

Ag 0,37 
A1 0,264 
Au ] 0.216 
Nb ~ 0,117 
Ir [ 0,45 
Mo t 0,276 
Ni 0,492 
Pb 0,30t 
V 0,t87 
Mg 0,275 
Y 0,3t2 

Type ~ o .  of 
of la t -  I ~A [region t iee , 

1 
0,37 C 0,558 [ IV 
0,264 C 0,884 ] ItI  
0,216 C 0,724 IV 
0,t17 C t,33 II 
0,45 C 0,623 IV 
0,276 C t,08 II 
0,492 C 0fi65 IV 
9,301 C 0,604 IV 
0,t87 C t, t47 II 
0,266 HD 1,t36 II 
0,3i6 HD 1,183 II 

TABLE 2 

Ele- [ No. of 
m ent ~ ] I~ v AA region 

Fe  

K 
Ge 
C 
Na 
Th 

Li 

0,505 0,5O5 
0,508 0,508 I 

0,5:t9 0,519 
0,535 0,535 
0,575 0,575 
0,635 0,635 
0,652 0,652 

i I 
(I,075 10,455 [ IV 

--0,582 i0,362 IV 
0,468 0 ,52 IV 

0,862 i0,713 III  
--0,736 0,34 IV 
--0,247 0,284 IV 
--t ,525 0,2i2 IV 

i 

4,6 
1 , /  

_ J  /] 
i , 2  j 

2 

o o , t  0 ,2  o,~ 0 , 4  a 

21 

li.,%,..--s-, iv'/J 

o 0 ,5  0,75 a 

Fig. 2 Fig. 3 

gularities not characteristic of media belonging to the first group and, in particular, 
isotropic media [5]. 

Thus, the two parameters h A and a, by uniquely determining a point of the AA, a plane 
in Fig. 2, give a complete representation of the anisotropic medium under consideration. 
Depending on which of the regions 1-IV the point occupies, the existence and disposition 
of the lacunas are determined in the form of the roots of the characteristic equation. The 
closeness of the boundaries separating the regions determines the size of the lacunas and 
largely the form of the curves of displacements for the problems just indicated. For example, 
in the case of copper (A A = 0.478, a = 0.442) the point on the hA, a plane falls into region 
IV and is situated close to the lower boundary of the region. This indicates that the roots 
of the characteristic equation belong to the fourth type, the coordinate axes x and z in- 
tersect the lacunas, and the lacunas occupy a relatively large region behind the wave front, 
which is confirmed by specific calculations. 

3. The reciprocal of the Young's modulus in the case of cubic crystals is equal to 

1 c~ - c ~ - - %  ,' '2 I ) L ,  
k~=-:: (c l  - -  c.2 -:- c:~) (Cl - - 2c., - -  2ca)  [ cl  ..... c., =- c a c.. 

.) o o 9 2 2 

Here ~i are the direction cosines of the sample axis. In terms of hA, ~ Eq. (3.1) 
takes the form 

I _. ~i) IG ' ( A A - - t ) L ] ;  d ) ~  ( l - - a p  
a (cl - -  c~) [A A (t ~', a) - -  (1 - -  a)] ; 

G=-- a ( A  A ~-t) A A 
A A ( I - - 2 , ~ ) - # -  2 ( 1 - - r 1 6 2  

(3.1) 

(3.2) 
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Assuming that 0 ~ t ,  let us consider the AA, a. 

On passing through the value kay=0 = (i--=)/(i @ ~), the function ~ changes sign; this 
value coincides with the lower limit of permissible values of A A (determined by the hyper- 
bolic conditions), and hence ~>0 for the whole permissible range of AAwhen 0~<i. 

On passing through the value A7 =--2(i~=)/(i--2a), G changes sign; this value divides 
the region of permissible values of A A into two parts. To the right of the curve A~(=) 
G is negative and to the left, positive. The quantity (AA--I) is positive for A4~ j 
and negative for AA~I 

Negative values of the Young's modulus correspond to the values of A A lying to the right 
of the curve A~!(~), and this region should be regarded as forbidden. It is readily seen 
that in the case of isotropic media (points on the straight line A A = i) the permissible 
values include 0~0,75 for Aa~i the Young's modulus assumes maximum values, together 
with the quantity L, i.e., in the <Ill), directions; it assumes minimum values in the direc- 
tion of the cube axis <i00> . For Aa>i (first group of media) the maximum values of the 
Young's modulus correspond to the <i00> and the minimum to the <ill) directions. 

In Fig. 3 the regions to the right of Aa = A~(~) and below the curve A~=~ =(i--~)/(16~), 
corresponding to the forbidden values of AAare shaded with oblique lines and the region 
AA<I with horizontal lines. Curves 1-4 are the same as in Fig. 2, while curve 5 correspond~ 
to the line Aa= A~(a). The quantities a, ~, y,the types of lattices (C = cubic, NC = hexag- 
onal close-packed), and the number of the regions (in accordance with Fig. 2) are presented 
for a number of elements in Table i. 

Table 2 presents data relating to metals for which the value of a lies in the range 
0,5<<~,<0ff5. 

Let us consider the values of ~>l, corresponding to Aa<0. Ase-+oowe have 

kay=0 : (1 -- ~z)/(t § =) -+ -- t, 

i.e., for e>l, the hyperbolic conditions allow values A A in the range-- i<Aa<0. 
Values of ~>I lie to the right of the curve A~(~) so that for the ~ values in question we 
have negative values of the Young's modulus. This also follows from Eqs. (3.2). Thus values 

+ of ~>! are forbidden, as are all values of AA, ~ to the right of curve AA=AT(~). 

Negative Young's moduli are forbidden for cubic crystals because they fail to satisfy 
the positive-definite elastic-energy condition for triaxial deformation, 

an > O, a~l > 1~1~1, all-'r-2al.,_ ~.  O, 

which in the present notation may be written in the form 

(3.3) 

According to (3.3), in fact, q)G=(qic2 -- @/[(q--c~+~)(~-2~--2~)1 is always positive 
and hence so is the Young's modulus. 

For media not belonging to the class of cubic crystals, the conditions ensuring a 
positive Young's modulus do not coincide with the conditions ensuring a positive-definite 
elastic energy, subject to triaxial deformation. Thus for such media negative values of 
Young's modulus are no longer forbidden unless they involve infringement of the condition 
of positive-definite elastic energy. 

4. In conclusion, let us indicate the simplest method of finding ?, which determines 
the boundary between regions I and II in Figs. 2 and 3. 

In addition to the "region-I" medium of current interest, having the wave-front con- 
figurations as indicated in Fig. ib and d, let us consider a model medium differing from the 
first simply by virtue of the fact that the wave pattern is turned through 45 ~ relative to 
the coordinate axes. The coordinate axes will then intersect the lacunas, and in accordance 
with the foregoing classification the model medium will belong to region IV. The transition 
from region I to region II for the original medium is equivalent to a transition from IV 
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a l t to III for the model. The critical value 7~ is determined by the equation 7----~ (a--t), 
where e', 7' are the parameters of the model medium. 

The deformation components in the coordinate system rotated through a n :  angle y are 
related to those in the original system by the equations 

F 

' o a-~z - ~'.,..,- sin"- L -= s , :  cos-  L - -  e~: s i n  Z cos %; 

= - -  2e~.~ si l l  k e o s  ~, -~- 2gz: sip, ), cos )~ - -  g,,: (cos 2 ~. - -  s i l l  2 )~). 

(4.1) 

For the angle ~45 ~ c o s 2 ~ , = s i n  2 L-=I/2. 

For the elastic potential we have two equivalent equations: 

t , , t • 

F = cl ( e% + e~-'~) + 2 (co - -  c;) e:..S~., _ c3e.~; 

F = c~ (e2~ § e ~ )  + 2 (c2 - -  ca) e~.~e~ + c3e~.  

(4.2) 

(4.3) 

Substituting (4.1) into (4.2) we obtain: 

�9 Oc' 2c  c -4+d. 2 A = c ; + c ~ + c : ; ,  2 B = c ; i c a - - o 3 ,  = 

(4.4) 

(4.5) 

By comparing (4.3) and (4.4) we obtain 

A = c l ,  B = c ~ -  c~, C = c  s. ( 4 . 6 )  

The set of equations (4.5) and (4.6) constitutes a system for determining the coefficients 
! T ! 

ci, c=, c3 of the model medium; on solving this we have 

C3/C 1 " ,  =-: [ (5  -7 '  0~,) - -  V - I  + 0~ 2 - -  " ~ ] / 2 ;  C2ICl = i - -  if,. 

For the parameters a ' ,  7 '  we obtain the following expressions: 

a ' =  [ ( l + a )  - 1 # 1 §  - 7 ] / [ ( l § 2 4 7  ~ - -  7 ] ;  

7' = t + = "  - 4 (1  - ~)~/[(1 + =) + 1 / ~  + =~ - 7] 2. 

(4.7) 

(4.8) 

The prime denotes the parameters for the model medium. 

Substituting (4.7) and (4.8) into 7'=~'(~'@I), we find a quadratic equation for y: 

72 + 3(I -- g)2 _ a(10g~ _ 16g + 10) = 0, 

and on solving this we obtain the value of 7=7,, defined by (1.7). The AA,(a ) and A~(g) 
curves intersect in a certain point at which A A ~ - ~ 2 . 6 .  Thus in all cases when A A : > 2 . 6  
the geometry of the wave fronts takes the form of Fig. ib,c,d, i.e., u is characterized 
by the presence of four lacunas not lying on the coordinate axes. 

The author wishes to thank S. A. Khristianovich for interest in this work. 
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